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Electromagnetic-Wave Propagation in a
Conducting Waveguide Loaded with

a Tape Helix

HAN S. UHM AND JOON Y. CHOE

Abstract —Dispersion properties of the electromagnetic (EM) waves,

propagating through a tape hefix Ioeated inside a waveguide, are investi-

gated. A complete dispersion relation for the eigenfrequency u and the

axiaf wavenumber k is obtained, including influence of the outer conduct-

ing wall on the EM-wave propagation. It is shown that the fimiting case

where the outer conducting wafl is very close to the hef@ tie helh mode is

nearly a straight line in the (o, k) parameter space, and is independent of

the width of the hetii tape. Moreover, contrary to the conventional helix

theory, the outer conducting wafl completely efirninates the forbidden

regions in the (u, k) parameter space.

I. INTRODUCTION

o NE OF THE slow-wave structures that has been used

frequently in a wide-band microwave amplification is

the helix waveguide [1]-[10]. Except for a limited study [10]

of the fast waves in a dielectric-loaded helix waveguide,

previous analyses of dispersion properties in a helix wave-

guide have been nzostlj restricted to the helix itself, without

proper investigation of the important influence of an outer

conducting wall on behavior of the electromagnetic (EM)

wave propagation. Particularly, previous papers [1]–[9] have

been concentrated on the slow-wave dispersion properties,

where the phase velocity of the EM wave is less than the

speed of light in vacw. Although this limited analysis is

reasonable in the application on the traveling-wave tube

where the electron-beam mode is less than the speed of

light, for newly developed microwave devices such as the

gyrotrons [11]–[14], the magnetrons [15], and the free-elec-

tron laser [16], [17], we are urged to improve the theory of

the helix waveguide modes, including the fast wave. These

new microwave tubes frequently utilize coupling of the

electron-beam mode with the fast wave.

This paper develops a theory of the dispersion properties

of the EM-wave propagation in a tape-helix-loaded wave-

guide. The present work extends the previous theory [18]

developed by the authors for an idealized sheath helix, to a

more realistic tape helix. Dispersion relation of a tape helix

without an outer conducting wall has been presented in

various previous papers [3], [4]. However, because of lack

of the fast-wave portion in the dispersion relation, previous

results exhibit periodic appearance of the forbidden re-
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gions in the (~, k) parameter space, where Q and k are the

eigenfrequency and the axial wavenumber, respectively.

The fast-wave portion of the EM dispersion relation shows

up only for an inclusion of the outer conducting wall or for

an inclusion of a dielectric material [10]. In this regard, in

Section II, we obtain the full dispersion relation ((24) and

(25)) of the electromagnetic waves in a helix-loaded wave-

guide, including the important influence of the outer con-

ducting wall.

In the limiting case when the outer conducting wall

approaches close to the helix, it is shown that the disper-

sion relation is reduced to three simple distinctive relations.

These are the transverse electric-like (TE-like), the trans-

verse magnetic-like (TM-like), and the helix modes. Re-

markably, the helix mode in this limit is identical to the

result [18] obtained for an idealized sheath helix, thereby

not depending on a moderate value of helix tape width.

Moreover, presence of the outer conducting wall com-

pletely eliminates the forbidden regions in the (Q, k)

parameter space. On the other hand, when the outer con-

ducting wall is removed from the helix to infinity, the

present dispersion relation recovers the previous result

obtained by Sensiper [4]. In Section HI, the full dispersion

relation is numerically investigated for a broad range of

system parameters. It is shown from the numerical analysis

that the dispersion curves of the helix mode wiggle more

strikingly as the outer conducting wall is further removed

from the helix to infinity. In addition, we find that there

are infinite numbers of hybrid waves which consist mostly

of combinations of the TE- and TM-like modes.

In a broad sense, the full dispersion relation in (24) and

(25) of the electromagnetic waves in a helix-loaded wave-

guide also includes the transmission line physics where the

plane waves and lump circuit analysis prevail. Moreover,

the transmission line physics emphasizes the surface wave

locally concentrated on the,surface of the tape helix, thereby

allowing propagation of near-zero frequency. Obviously

from Section III, the dispersion relation in (24) and (25)

describes both the slow waves corresponding to the trans-

mission line and the fast hybrid waves, which explicitly

exhibit the cutoff frequency. The forbidden region in the

(a, k) parameter space is important in the antenna theory,

because of radial radiation of the EM-wave energy. How-

ever, enclosure of the helix circuit with a conducting wall
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Fig. 1. System configuration and cylindrical coordinates.

withholds radial dissipation of the EM-wave energy, thereby

prohibiting the radiation. From a mathematical point of

view, the radial profile of the EM waves in the forbidden

region is described by a modified Bessel function, which

decreases monotonically along the radial direction. On the

other hand, in the presence of the outer conducting wall,

the radial profile of the wave is described by an ordinary

Bessel function, clearly indicating a pattern of a standing

wave in the radial direction. In this regard, presence of the

outer conducting wall completely eliminates the forbidden

region, allowing the propagation of the EM waves along

the axial direction.

II. DISPERSION RELATION FOR TAPE HELIX

A realistic representative physical model of the wire

helix is the tape helix shown in Fig. 1, where a helix tape

with width 8 and zero thickness is located inside a conduct-

ing waveguide with radius RC. The radius and pitch of the

helix are denoted by Rfi and L, respectively. We, therefore,

define the pitch angle @by

cot+ = 21rRh/L. (1)

As illustrated in Fig. 1, cylindrical polar coordinates (r, 0, z)

are introduced in the present analysis.

Application of Floquet’s theorem shows that when the

helix is moved a distance L in the z-direction, it coincides

with itself. Thus the z-dependence of the fields must be of

the form

exp(ikMz) =exp{i(k–2~rn/L)z}

where m is an integer (i.e., m = O, +1, &2,” .0 ) and k is the

axial wavenumber. It is also seen that if the helix is moved

a distance less than L and then rotated in /3 through a

certain angle, it again coincides with itself. Consider the

general form of the EM field $(x, t ) having the foregoing

z-dependence

([ ( L) 1)
+(x,t)= ~~n,~(r)exp i ntl+ k–irzZ z–tit

n,m

(2)

where the azimuthal harmonic number n is also an integer

(n=o, *l, &2,... ) and o is the eigenfrequency. Replac-
ing z and f3 in (2) by z‘ + z and O‘ + 21rz/L, respectively,

we obtain

~(x’, t)=exp{i(kz -tit)} ~ ~n,n(r)

n,m

“exdi[no’+(k-waz’+(n-+zl} ‘3)
According to Floquet’s theorem, the solution as a function

of 0‘ and z‘ must be of the same form as it is as a function

of 0 and z. To ,ensure this, it is necessary to take [3]

and for m # n – 1to put I). ~ = O. In (4) the space harmonic

number 1= n – m is an arbitrary integer. In this regard, all

components of the EM field are assumed to vary according

to

~(x, t)= ~ $n(r)exp {i(nf3+knz-~t)}. (5)
~=—~

where the total axial wavenumber k. is defined by

kn=k–(n–l); . (6)

The Maxwell equations for the electric and magnetic

field amplitudes can be expressed as

vXJ?(x)=i(O/c)5(x)

v x fi(x) = (47r/c)i(x)- i(ti/c)A(x) (7)

where c is the speed of light in uacuo, l?(x) and A(x) are

the electric and magnetic fields, and the electric current

density ~(x) vanishes except at r = Rh. Making use of (7),

for the azimuthal mode number n, itis straightforward to

show that the differential equation for the axial compo-

nents of the electric and magnetic fields is given by

(lad n’ a’
+—–k;

Ezn (r)
——— ——
r drrdr rz CZ

)( 1Bzn (r)
= O (8)

except at r = R~. Therefore, the physically acceptable solu-

tion to (8) is

f=(x) =~a~exp{i(nd+k.z)}
n

[

xJn(TL)

Nn({n)Jn(pnr)– J.({.)~.(P.r) (9)

Jn(~n)~n(~n)–Jn({n)~n(~n) ‘

Rh<r<RC

for the electric field and

jz(x)=~bnexp{i(~e+knz)}

n

i
x J:(TL)

N;({n)Jn(p.r)– Jit’(1.)M(p.r) (10)

Jn’(~n)X’(L)– Jn’(L)Mz’(Tin) ‘
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for the magnetic field. In (9) and (10), a. and b. are

constants, J.(x) and N.(x) are the Bessel functions of the

first and second kinds, respectively, of order n, the prime

(‘) denotes (d/dx)JH(x) and (d/dx)N.(x), and the

parameters q., {., and p. are defined by

q;= I;Ri/Rt = P:R: = (@2/c2 – k:)R~. (11)

In obtaining (9) and (10), use has been made of the

boundary conditions so that the tangential electric field is

continuous for all 6 and z-directions.

The additional boundary conditions at r = R~ for the

tape helix are derived from the property that the discon-

tinuity in tangential magnetic field is equal to the total

surface current density. These are

b:– i:= ~J,cos+ (12)

and

B; – B; = ~~lsin~ (13)

where the superscripts i and oArepresent ~i = lim, ~ ~+~ ( Rk

; c, d, z) and &’ = lim, + ~+4(RA + q 0, z), respectively,
~1(r = R~, 0, z) is the surface current density along the

helix direction with the unit vector

i?+ = cos @?@+ sin@?Z (14)

and 80 and i?= are unit vectors in the azimuthal and axial

directions.

For regions, small compared to a free-space wavelength,

the fields are solutions to Laplace’s equation and are like

static fields. We, therefore, assume that the current in the

tape flows only in the tape direction, that it does not vary

in phase or amplitude over the width of the tape, and that

its phase variation in the direction of the tape corresponds

to 16 + kz for 0 and z corresponding to a point moving

along the centerline of the tape [3], [4]. Within the context

of these assumptions, the surface current density ~1 in (13)

is expressed as

.

{

~exp{i(l+Lk/2n)O}, L8/2v < Z < L@/2r + 8
Jll = o

? elsewhere.

(15)

Fourier decomposing this current density, we obtain

~l=Ejll.exP {i(nd+knz)} (16)
n

where the component amplitude jll~ is defined by

sin ( k#/2)
.iIln = ~~exp ( – ik#/2) k 6,2 . (17)

n

The constants a. and bn in (9) and (10) can be expressed

in terms of the component amplitude j,, ~ of the surface

current density at helix, by making use of the boundary

conditions in (12) and (13). Substituting (10) and (16) into

(12), we obtain

(18)

where use has been made of the Bessel function identity

Jn(x)N;(x) –J;(x)Nm(x) = 2/7rx.

Similarly, the constant a. is given by

For further analysis, we assume that at the helix surface,

the electric field along the helix direction is set equal to

zero along the center line of the tape, i.e.,

f,, =(~”$+=ll,=o (20)

at z = ( Lt?/2 m) + (i$/2). This assumption satisfies the

boundary conditions on electric field approximately. How-

ever, the approximation is good for narrow tapes [3], [4].

Obviously from (14) and (20) we obtain

Making use of the Maxwell equation (7), we can show that

the component of the azimuthal mode number n for the

electric field fill is expressed as

}
– i; cos@b.J~(qn) exp{i(n/3+ knz)}. (22)

JMminating the constants an ad b. in favor ofjlr. gives

+,(ta+!J-

.[Jn(fn)Nn(qn)-Jn( qn)Nn({n)]

}.illn

}
“ [Z’(owln)- L’(%)~J({n)]. (23)

This electric field is to be set equal to zero along the center

line of the tape, i.e., at z = (Lf3/27r) + (8/2). Making use of

(17), we get the dispersion relation

where the function 17~is defined by
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k. = k – 2m(n – I)/L, and l., q. and p. are defined in

(11). The dispersion relation in (24), combined with (25), is

one of the main results of this paper and can be used to

investigate properties of the EM waves in a tape-helix

waveguide for a broad range of system parameters.

Obviously the dispersion relation in (24) is a very com-

plicated transcendental function of u and k. However, in

the limiting case when the outer conducting wall ap-

proaches to the helix (i.e., RC ~ Rh ), the dispersion relation

in (24) can be simplified to

The helix mode [18] is obtained by further simplifying (26)

to

E
Sill ( k#/2) ‘

kn~/2 {a - [kc ‘in@ +n(c/Rc)cos@]2}
n

(27)

where use has been made of the approximation J. ( q. )/

J.(m, =1 and J;(q. )/J;(J.) = 1. Making use of (1), it is

straightforward to show that (27) is further reduced to

(28)

from which we obtain the helix mode

a = ~ [kc sinr) + ~(C/RC)COSq] (29)

(
for RC ~ Rh. It is remarkable to note from (29) that the

helix mode is a straight line in the (co, k) parameter space.

Equation (29) is identical to the result obtained by authors

[18] for a sheath helix waveguide. Moreover, this mode is

independent of the width 8 of the helix tape for R. -+ Rh.

Obviously from (29), we also. conclude that there is no

forbidden region in the (o, k) parameter space for the

helix mode in a tape-helix-loaded waveguide, which is

contrary to properties of the helix mode in a tape helix

without outer conducting wall [3], [4]. The linear depen-

dence of the eigenfrequency a on the axial wavenumber k

is particularly important in connection with application on

the wide-band microwave amplifications.

In order to further investigate properties of the disper-

sion relation in (26), we first analyze the function defined

by

~(~) = J.(Rx)/Jn(x) (30)

where R is a real quantity satisfying Os R -=1. Apparently

the function ~(x) has singularity at x = &, where /3., is the

s th root of Jm(/3.,) = O. Shown in Fig. 2 are plots of ~

versus x for n = 3,s = 1 and several values of R. Obviously

from Fig. 2, we note that the function ~ changes very

rapidly at x =&l = 6.38016. From (30), it can be shown

~(&+A)-~(&,-A)= -%,(1 -R)/A (31)

10

5

D

R = 0.99

R = 0.999
1rf 06.30 6.35

R = 0.9h

–5
I

R = 0.9999

?

6.40 6.45

R = 0.99

Fig. 2. Plots of the function ~(x)= J. ( Rx)/Jn ( x ) versus x for n = 3,

s = 1 and several values of R.

for R +1 and A<< 1. We, therefore, conclude from (31)

and Fig. 2 that for R ~ 1, the function ~ will be any value

between the negative and positive infinities by slightly

changing the argument ‘x from x =/3.,. In this context,

there is always a value of f. very close to ~.,, which

satisfies (26) for RC ~ Rh. This mode is identified by the

transverse magnetic-like (TM-like) mode

(32)

In a similar manner, from (26), we also identify the trans-

verse electric-like (TE-like) mode

l/_k2=4
C2 .n Z (33)

in the limit R= ~ Rh. In (33), a., is the sth root of

J;(a.,) = O. Replacing k. in (32) and (33) by k gives
familiar TM and TE dispersion relations in an ordinary

waveguide.

Finally, we point out that in the limit of RC ~ co, the

dispersion relation in (24) can be simplified to

{ )x +@+y 2LA%)WI.)
n

U2R; ,
-@(!w%(%)

)

sin (k#/2) =() (34)
+

k#/2

where qf = – q:, and I.(x) and K.(x) are the modified
Bessel functions of the first and second kinds, respectively,

of order n. Equation (34) is identical to the result obtained

by Sensiper [4].

III. PROPERTIESOF DISPERSION RELATION

After a careful examination of (24) and (25), we obtain

the following symmetry relation

D(u, k,l, @)= D(u, k+2rl/L,0, @)

=D(–ti, k,l, @)= D(w–k, –l, ~)

(35)
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from which one notes two important properties. First,

dispersion curves of the EM waves are symmetric about

a = O line. Second, dispersion curves for space harmonic

number 1 are generated from those for 1= O, by simply

replacing k by k + 2d/L in the (O, k) parameter space. In

this regard, without loss of generality, analysis of (24) in

this section is restricted to the positive eigenfrequency

(U> O) and 1=0 mode.

The dispersion relation in (24) and (25) is numerically

investigated for a broad range of system parameters R ./Rh,
$, 8/L, and 1. Even a numerical calculation of (24) is very

complicated. After a careful examination of (24) and (25),

we observe the following. Because the function sin x/x has

the maximum amplitude at x = O, the dispersion relation in

(24) is dominated by the component n corresponding to a

smallest absolute value of k.. In this regard, we note from

(6) that the value of n corresponding to the dominant

component in (24) increases as the axial wavenumber k

increases. For a moderately large value of 8/L (0.2< 8/L
< 0.5) and the 1 = O space harmonic mode, the dispersion

curves near

k=(n/Rh)cot@ (36)

can be approximately represented by

rn((.d, k,o, +)=o (37)

which incidentally has an identical form to the dispersion

relation of a sheath helix [18] for the azimuthal harmonic

number n. From the previous analysis [18] of the sheath

helix dispersion properties, it has been shown that for

specified value of @ and n, the minimum value of a at

k = (n/R~ )cot @satisfies

0> n(c/RC)cos@ (38)

for any values of RC/Rh. Combining (36) and (38), we,

therefore, conclude that for the 1= O space harmonic mode,

all dispersion curves in the region defined by ti >0 and

k >0 must satisfy

u > kc(Rh/RC)sin@. (39)

Dependence of dispersion properties on the parameter

R ./Rh is illustrated in Fig. 3 where the normalized eigen-

frequency tiRh /c cos @(solid curves) are plotted versus the

normalized ‘axial wavenumber kR ~ tan $ for 1= O helix

mode, @= w/6, i3/L = 0.3, and (a) RC/Rh =1.1; (b)

RC/Rh =1.5; (c) RC/Rh =2; and (d) RC/Rh =5. Two

dashed straight lines represent u = kc sin @ and @=

kc(Rk /RC) sin @ from (29) and (39), respectively. Several
points are noteworthy from Fig. 3. First, dispersion curves

of the helix mode approach to the straight line defined by
(29) as the parameter Rc/R~ is reduced to unity. Second,

the dispersion curves of the helix mode wiggle more promi-

nently as the parameter R ./Rh increases from unity to

infinity. Third, the helix dkpersion curves overall approach

to the line u = kc(R. /R.)sind as the uarameter R./R.

cd Rh

c Cos @

5 - (a)

RJRh=l.l

4 - 61L = 0.3
# = 300

3 - 1=0

2 -

1-

0
HELIX MODE

012345

k Rh tap 1$

(a)

5 - (b) /
/
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/
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012345
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/

/
RJRh=2 /
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/
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CdRh /
/

c Cos @ /
2 - /

/
/
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~=o
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/
c Cos @ / HELIX MODE

2 - /
/

/

1- /’

o
Q= kc(Rh/RC) sin~

012345

kRh tan@

(d)

Fig. 3. Plots of normalized eigenfrequency tiRk /c cos @ (solid curves)

versus normalized a.xiaf wavenumber kR ~tan@ obtained from (24) and
(25) for l= O helix mode, o = r7/6, 8/L = 0.3. (a) Rc/Rfi =1.1.(b)
RC/Rh =1.5. (C) RC/Rh = 2. (d) RC/Rh = 5.
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Fig. 4. Plot of normalized eigenfrequency tiRh /c cos o versus kRfi tan~
obtained from (24) and (25) for o = 7r\12, R ./Rh = 1.5 and parameters

otherwise identical to Fig. 3.
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IV. CONCLUSIONS

In this paper, we have investigated properties of the EM

wave propagation in a tape-helix-loaded waveguide. In

deriving the dispersion relation of the wave, we assumed

that the current in the tape flows only in the tape direction

and that it does not vary in phase or amplitude over the

width of the tape. In the limit RC/Rh ~ 1, it has been

shown that the helix mode in a tape helix is identical to

that of a sheath helix, thereby not depending on the width

of helix tape. Moreover, presence of the outer conducting

wall completely eliminates the forbidden regions usually

appearing in a tape-helix theory. From numerical analysis

of the dispersion relation, we found that the dispersion

curves of the helix mode wiggle more prominently as the

outer conducting wall is further removed from the helix to

infinity. In addition, it has been also found that there are

infinite numbers of hybrid waves which mostly consist of a

combination of the TE- and TM-like modes.

Finally, a preliminary study on the gyrotron amplifier in

a tape-helix-loaded waveguide has been carried out. This

study exhibits a strong coupling between the electron

cyclotron mode and the hybrid waves, indicating possibil-

ities of the microwave amplifications by a hybrid fast wave.

However, theoretical analysis of the gyrotron amplifier in a

tape-helix waveguide is very complicated and is currently

under intensive investigation by authors. The results of this

work will be published elsewhere.

Fig. 5. Plots of normalized eigenfrequency wRh/c cos @versus kRh tano
obtained from (24) and (25) for R ./Rb = 1.5, 1= O hybrid waves and

parameters otherwise identical to Fig. 3.
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Mode-Specific Reflectometry in a Multimode
Waveguide

DAVID S. STONE, bll?MBER, IEEE, KEVIN L. FELCH, AND STEPHEN T. SPANG, MMBER, IEEE

.4bstmct —A technique for measuring the ~oltage-standing-wave ratio

(VSWR) created by a mismatch for a specific mode in a mnftimode

waveguide is described. A heaviiy loaded resonant cavity is used to launch

the mode of interest and the variation in the cavity loaded Q is noted as the

phase separation of the cavity and the mismatch is varied. The bandwidth

of this technique is generally about 0.03 percent and VSWR as low as

1.05:1 may be measured accurately. Mode-spedc VSWR measurements

are of particular interest in anaiyzing the performance of mnitimode

waveguide components, and in opthnizing muitfmode networks. ‘i’he mea-

surement technique may be used, for example, in the design and optitniza-

tion of transmission iinea for eiectron cyclotron resonance heating systems

in magnetic fusion devices.

I. INTRODUCTION

R ECENT ADVANCES in high average power millime-

ter-wave devices, such as the gyrotron [1], [2], have

aroused interest in the use of multimode waveguides for

handling power levels which would produce excessive power

densities in single-mode systems. Millimeter-wave sources

of this type are susceptible to mode competition [3], which

is aggravated by reflections of either the principal mode of

interest or of the competing modes. It is, therefore, particu-

larly important to be able to characterize a multimode

waveguide system by measuring the voltage-standing-wave
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Fig. 1. Schematic diagram of three VSWR measurement techniques in

muitimode waveguide.

ratio (VSWR) for several specific modes of interest in the

system.

Conventional reflection measurements in waveguides are

made using commercially available transducers to launch

the waveguide mode of interest (see Fig. 1). Standard

millimeter-wave test equipment is designed for the TE~O

(fundamental rectangular) mode, whereas overmoded

transmission lines, as employed in long-distance telephone

links [4], or gyrotron collector structures [5], are typically
cylindriwd. Thus transducers designed to produce mode

transformations of the type TE~O * TE~~ and TE~O e

TM;U are required. Only the simplest of these waveguide

components, the, TE~o e TE~l transducer is available with
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