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Electromagnetic-Wave Propagation in a
Conducting Waveguide Loaded with
a Tape Helix

HAN S. UHM anp JOON Y. CHOE

Abstract —Dispersion properties of the electromagnetic (EM) waves,
propagating through a tape helix located inside a waveguide, are investi-
gated. A complete dispersion relation for the eigenfrequency « and the
axial wavenumber £ is obtained, including influence of the outer conduct-
ing wall on the EM-wave propagation. It is shown that the limiting case
where the outer conducting wall is very close to the helix, the helix mode is
nearly a straight line in the (w, k) parameter space, and is independent of
the width of the helix tape. Moreover, contrary to the conventional helix
theory, the outer conducting wall completely eliminates the forbidden
regions in the (w, k) parameter space.

I. INTRODUCTION

NE OF THE slow-wave structures that has been used

frequently in a wide-band microwave amplification is
the helix waveguide [1]-[10]. Except for a limited study [10]
of the fast waves in a dielectric-loaded helix waveguide,
previous analyses of dispersion properties in a helix wave-
guide have been mostly restricted to the helix itself, without
proper investigation of the important influence of an outer
conducting wall on behavior of the electromagnetic (EM)
wave propagation. Particularly, previous papers [1]-[9] have
been concentrated on the slow-wave dispersion properties,
where the phase velocity of the EM wave is less than the
speed of light in vacuo. Although this limited analysis is
reasonable in the application on the traveling-wave tube
where the electron-beam mode is less than the speed of
light, for newly developed microwave devices such as the
gyrotrons [11]-{14], the magnetrons [15], and the free-elec-
tron laser [16], [17], we are urged to improve the theory of
the helix waveguide modes, including the fast wave. These
new microwave tubes frequently utilize coupling of the
electron-beam mode with the fast wave.

This paper develops a theory of the dispersion properties
of the EM-wave propagation in a tape-helix-loaded wave-
guide. The present work extends the previous theory [18]
developed by the authors for an idealized sheath helix, to a
more realistic tape helix. Dispersion relation of a tape helix
without an outer conducting wall has been presented in
various previous papers [3], [4]. However, because of lack
of the fast-wave portion in the dispersion relation, previous
results exhibit periodic appearance of the forbidden re-
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gions in the (w, k) parameter space, where w and k are the
eigenfrequency and the axial wavenumber, respectively.
The fast-wave portion of the EM dispersion relation shows
up only for an inclusion of the outer conducting wall or for
an inclusion of a dielectric material [10]. In this regard, in
Section II, we obtain the full dispersion relation ((24) and
(25)) of the electromagnetic waves in a helix-loaded wave-
guide, including the important influence of the outer con-
ducting wall.

In the limiting case when the outer conducting wall
approaches close to the helix, it is shown that the disper-
sion relation is reduced to three simple distinctive relations.
These are the transverse electric-like (TE-like), the trans-
verse magnetic-like (TM-like), and the helix modes. Re-
markably, the helix mode in this limit is identical to the
result [18] obtained for an idealized sheath helix, thereby
not depending on a moderate value of helix tape width.
Moreover, presence of the outer conducting wall com-
pletely eliminates the forbidden regions in the (w, k)
parameter space. On the other hand, when the outer con-
ducting wall is removed from the helix to infinity, the
present dispersion relation recovers the previous result
obtained by Sensiper [4]. In Section II1, the full dispersion
relation is numerically investigated for a broad range of
system parameters. It is shown from the numerical analysis
that the dispersion curves of the helix mode wiggle more
strikingly as the outer conducting wall is further removed
from the helix to infinity. In addition, we find that there
are infinite numbers of hybrid waves which consist mostly
of combinations of the TE- and TM-like modes.

In a broad sense, the full dispersion relation in (24) and
(25) of the electromagnetic waves in a helix-loaded wave-
guide also includes the transmission line physics where the
plane waves and lump circuit analysis prevail. Moreover,
the transmission line physics emphasizes the surface wave
locally concentrated on the surface of the tape helix, thereby
allowing propagation of near-zero frequency. Obviously
from Section III, the dispersion relation in (24) and (25)
describes both the slow waves corresponding to the trans-
mission line and the fast hybrid waves, which explicitly
exhibit the cutoff frequency. The forbidden region in the
(w, k) parameter space is important in the antenna theory,
because of radial radiation of the EM-wave energy. How-
ever, enclosure of the helix circuit with a conducting wall
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Fig. 1. System configuration and cylindrical coordinates.
withholds radial dissipation of the EM-wave energy, thereby
prohibiting the radiation. From a mathematical point of
view, the radial profile of the EM waves in the forbidden
region is described by a modified Bessel function, which
decreases monotonically along the radial direction. On the
other hand, in the presence of the outer conducting wall,
the radial profile of the wave is described by an ordinary
Bessel function, clearly indicating a pattern of a standing

+ wave in the radial direction. In this regard, presence of the
outer conducting wall completely eliminates the forbidden
region, allowing the propagation of the EM waves along
the axial direction.

II. DisPERSION RELATION FOR TAPE HELIX

A realistic representative physical model of the wire
helix is the tape helix shown in Fig. 1, where a helix tape
with width 6 and zero thickness is located inside a conduct-
ing waveguide with radius R . The radius and pitch of the
helix are denoted by R, and L, respectively. We, therefore,
define the pitch angle ¢ by

cot¢=2wR, /L. (1)

As illustrated in Fig. 1, cylindrical polar coordinates (r, 8, z)
are introduced in the present analysis.

Application of Floquet’s theorem shows that when the
helix is moved a distance L in the z-direction, it coincides
with itself. Thus the z-dependence of the fields must be of
the form '

exp (ik,,z) =exp{i(k —2am/L)z}

where m is an integer (i.e., m=0,+1,+2,---) and k is the
axial wavenumber. It is also seen that if the helix is moved
a distance less than L and then rotated in 6 through a
certain angle, it again coincides with itself. Consider the
general form of the EM field ¢ (x, ¢) having the foregoing
z-dependence

Y(x,t)= n‘,v_’,nx[;n’m(r)exp{i[nﬂ +(k— mz%)z - wt]}
()

where the azimuthal harmonic number 7 is also an integer
(n=0,%1,42,---) and w is the eigenfrequency. Replac-
ing z and @ in (2) by z’+ z and 8’ + 27z /L, respectively,
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we obtain

o(x, 1) = exp (i(kz = 1)} X $um(r)

~exp{i[n0’+(k ~ m%;)z’+(n - m)ggz]} (3)

According to Floquet’s theorem, the solution as a function
of §” and z’ must be of the same form as it is as a function
of @ and z. To ensure this, it is necessary to take [3]

(4)
and for m # n —I'to puty,, ,, = 0. In (4) the space harmonic
number / = n — m is an arbitrary integer. In this regard, all

components of the EM field are assumed to vary according -
to

m=n-—|

W(x)= T b(rep(i(nb+k,z—won). (5)

n=—w

where the total axial wavenumber &, is defined by

(6)

The Maxwell equations for the electric and magnetic
field amplitudes can be expressed as

v X E(x)=i(w/c)B(x)

v X B(x)=(4n/c)J(x)—i(w/c)E(x) (7N
where ¢ is the speed of light in vacuo, E(x) and B(x) are
the electﬂric and magnetic fields, and the electric current
density J(x) vanishes except at r = R,. Making use of (7),
for the azimuthal mode number n, it is straightforward to

show that the differential equation for the axial compo-
nents of the electric and magnetic fields is given by

19 3 n o 2){E (r)}=0 ®

_____ B, (r)

r ar' ar PrERY "
except at » = R,,. Therefore, the physically acceptable solu-
tion to (8) is

E,(x)=Y a,exp{i(n8+k,z))

k,,=k—(n—1)3L1.

Jn(pnr)7
0<r<gR, ,
SPTRLAGAIACAIRRACALACA)
" " Jn(nn)Nn(gn)_Jn(gn)Nn('n") ’
R,<r<R

©)

[4

for the electric field and

B,(x) = X b,exp {i(n0 +k,2)}

Ju(Pur)s
0<r<RgR, 7
X J,(n )Nn’(g‘n)‘]n(pnr)— Jn,(gn)Nn(pnr) (10)
)N = B GIN ()
R,<r<R,
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for the magnetic field. In (9) and (10), a, and b, are
constants, J,(x) and N,(x) are the Bessel functlons of the
first and second kinds, respectively, of order n, the prime
(") denotes (d/dx)J,(x) and (d/dx)N,(x), and the
parameters N §,» and p, are defined by
=GR /R = piR, = (/¢ = k7 R}, (11)
In obtalmng (9) and (10), use has been made of the
boundary conditions so that the tangential electric field is
continuous for all § and z-directions.
The additional boundary conditions at r = R, for the
tape helix are derived from the property that the discon-

tinuity in tangential magnetic field is equal to the total
surface current density. These are

Bi—-B= —Jjcos¢ (12)
and

A N T .

Bj — By=——Jysin¢ (13)

where the superscripts i and o represent = lim, J(R h
~¢€,0,z) and §° = lim,_,,, (R, +¢,0,2), respectlvely,

Ji(r=R,,0,z) is the surface current density along the
helix direction with the unit vector

(14)

and &, and é, are unit vectors in the azimuthal and axial
directions.

For regions, small compared to a free-space wavelength,
the fields are solutions to Laplace’s equation and are like
static fields. We, therefore, assume that the current in the
tape flows only in the tape direction, that it does not vary
in phase or amplitude over the width of the tape, and that
its phase variation in the direction of the tape corresponds
to /0 + kz for 6 and z corresponding to a point moving
along the centerline of the tape [3], [4]. Within the context
of these assumptions, the surface current density J“ in (13)
is expressed as

j_ {Jexp{i(l+Lk/2w)0}, L8N2n<z<LO/2n+$
I 0, elsewhere.

é,=cos péy +singé,

(15)

Fourier decomposing this current density, we obtain

f”=2j“nexp{i(n0+knz)} (16)

where the component amplitude Jijn 18 defined by

8 in(k,0/2
Jin = Z exp(— lknG/Z)Lnfc(ns/—z/)- (17

The constants a,, and b, in (9) and (10) can be expressed
in terms of the component amplitude Jyn Of the surface
current density at helix, by making use of the boundary
conditions in (12) and (13). Substituting (10) and (16) into
(12), we obtain

2 2 . Jn’(g‘n)Nn’(nn)_ Jn’(T’n)Nn,({n)
b,= —Z-J"nCOS on, 708

(18)
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where use has been made of the Bessel function identity
L ()N, (x)= J/(x)N,(x) = 2/7x.

Similarly, the constant a,, is given by

k,n

)

L (&I N(n,)= J,(n,)N,
7,) (19)

For further analysis, we assume that at the helix surface,
the electric field along the helix direction is set equal to
zero along the center line of the tape, i.e.,

Ey=(E-éy)r-x,=0 (20)

at z=(L6/27)+(8/2). This assumption satisfies the
boundary conditions on electric field approximately. How-
ever, the approximation is good for narrow tapes [3], [4].
Obviously from (14) and (20) we obtain

E,=Ey(R,)cos¢ + E,(R,)sine.

a,=— i%2w2j”,,nncos¢(tan¢ -

(%)

X

(21)

Making use of the Maxwell equation (7), we can show that
the component of the azimuthal mode number n for the
electric field E ; is expressed as

k,n )

Ny Pr

o costh,1{(n,) | exp i(n + £,2)). (22

E[ln = {“an(ﬂn)c°S¢(tan¢ -

Eliminating the constants a, ad b, in favor of Jyn Blves

Py

2
E,=- 2 cos®¢ ) exp {i(nf + k.2)} jin
wR, -

{nn )zfn(nn)

J.($,)
[ 2N, ()= T (0,) N, (8] + “’ZTIﬁ %((;7%

(23)

nln

-[J,:(z,,w,:(n,,)—J,:<n,,>N,:(§,,)]}.

This electric field is to be set equal to zero along the center
line of the tape, i.., at z = (L8/27)+(8/2). Making use of
(17), we get the dispersion relation

D(w,k,l,(i)):Z%S—/zl

" sz Ll kLe)=0 (4)

where the function T}, is defined by

)

X[ (5N, ()= T, (n,) N, (5,)]

w’R;; J/(n,)
& T8

— L(&INED)] }

rn("": k, l:¢) = {ﬂi(tami’ - kn

nPn

[7(5)N,(n,,)

(25)
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k,=k—-2w(n—1)/L, and §,, 7, and p, are defined in
(11). The dispersion relation in (24), combined with (25), is
one of the main results of this paper and can be used to
investigate properties of the EM waves in a tape-helix
waveguide for a broad range of system parameters.

Obviously the dispersion relation in (24) is a very com-
plicated transcendental function of w and k. However, in
the limiting case when the outer conducting wall ap-
proaches to the helix (i.e., R, — R,), the dispersion relation
in (24) can be simplified to

Z smlgk882/2) {fz(tamp— k,R,n )21,,(11,,)
/ n

§3 Jn(g’n)
_WREn? =80 Jl(n,) | _
KR J,:(s:,)}_o‘ (26)

The helix mode [18] is obtained by further simplifying (26)
to

sin(k,8/2)

Z %.5/2 {2-—[k,,csinq>+n(c/Rc)cosq>‘]2}

(27)
where use has been made of the approximation J,(n,)/
J.($,)=1 and J/(n,)/J/(§,)=1. Making use of (1), it is
straightforward to show that (27) is further reduced to
sin(k,8/2)

ks/2 0

(28)

{@? [ ke sing +I(c/R,)cos$]’} 2

from which we obtain the helix mode

w=+[ke sing +I(c/R,)cos ¢] (29)

for R,— R,,. It is remarkable to note from (29) that the
helix mode is a straight line in the (w, k) parameter space.
Equation (29) is identical to the result obtained by authors
[18] for a sheath helix waveguide. Moreover, this mode is
independent of the width § of the helix tape for R, — R,.
Obviously from (29), we also. conclude that there is no
forbidden region in the (w, k) parameter space for the
helix mode in a tape-helix-loaded waveguide, which is
contrary to properties of the helix mode in a tape helix
without outer conducting wall [3], [4]. The linear depen-
dence of the eigenfrequency w on the axial wavenumber k
is particularly important in connection with application on
the wide-band microwave amplifications.

In order to further investigate properties of the disper-
sion relation in (26), we first analyze the function defined
by

f(x)=J,(Rx)/7,(x) (30)

where R is a real quantity satisfying 0 < R <1. Apparently
the function f(x) has singularity at x = 8,  where B, is the
sth root of J,(B,,)=0. Shown in Fig. 2 are plots of f
versus x for n =3, s =1 and several values of R. Obviously
from Fig. 2, we note that the function f changes very
rapidly at x = B;; = 6.38016. From (30), it can be shown

f(B+8)—f(B,,—8)=—B,,(1-R)/A  (31)
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Fig. 2. Plots of the function f(x)=J,(Rx)/J,(x) versus x for n=3,
s =1 and several values of R.

for R—»1 and A < 1. We, therefore, conclude from (31)
and Fig. 2 that for R -1, the function f will be any value
between the negative and positive infinities by slightly
changing the argument x from x=g,,. In this context,
there is always a value of §, very close to B,,, which
satisfies (26) for R, — R,. This mode is identified by the
transverse magnetic-like (TM-like) mode

2 2 2
&’__kZ__.&'_:_n_s
2 :

¢ R: R:

c

(32)

In a similar manner, from (26), we also identify the trans-
verse electric-like (TE-like) mode

(33)

in the limit R,— R,. In (33), a,, is the sth root of
J/(a,,)=0. Replacing k, in (32) and (33) by k gives
familiar TM and TE dispersion relations in an ordinary
waveguide.

Finally, we point out that in the limit of R, — co, the
dispersion relation in (24) can be simplified to

Z{qn(tan¢+kR

) 1,(4.)K,(4,)

n n

2p2

w“R
+—cz—"1,{(qn)K,:(qn)}

where g2 = — 72, and I,(x) and K,(x) are the modified
Bessel functions of the first and second kinds, respectively,
of order n. Equation (34) is identical to the result obtained
by Sensiper [4].

sin(k,8,/2)

e =0 (4

IIL.

After a careful examination of (24) and (25), we obtain
the following symmetry relation

D(w,k,1,¢)=D(w, k +27l/L,0,¢)
=D(-w,k,l,¢)=D(w, -k,

PROPERTIES OF DISPERSION RELATION

—1,¢)
(35)
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from which one notes two important properties. First,
dispersion curves of the EM waves are symmetric about
w =0 line. Second, dispersion curves for space harmonic
number / are generated from those for /=0, by simply
replacing k by k +2#l /L in the (w, k) parameter space. In
this regard, without loss of generality, analysis of (24) in
this section is restricted to the positive eigenfrequency
(w > 0) and /= 0 mode.

The dispersion relation in (24) and (25) is numerically
investigated for a broad range of system parameters K. /R,
¢, 8/L, and /. Even a numerical calculation of (24) is very
complicated. After a careful examination of (24) and (25),
we observe the following. Because the function sin x /x has
the maximum amplitude at x = 0, the dispersion relation in
(24) is dominated by the component r corresponding to a
smallest absolute value of k,. In this regard, we note from
(6) that the value of n corresponding to the dominant
component in (24) increases as the axial wavenumber k
increases. For a moderately large value of § /L (0.2 <4/L
< 0.5) and the / = 0 space harmonic mode, the dispersion
curves near

k=(n/R,)cot¢ (36)

can be approximately represented by

T (w,k,0,6)=0 (37)
which incidentally has an identical form to the dispersion
relation of a sheath helix [18] for the azimuthal harmonic
number n. From the previous analysis [18] of the sheath
helix dispersion properties, it has been shown that for
specified value of ¢ and n, the minimum value of w at
k = (n/R,)cot ¢ satisfies

(38)

for any values of R,/R,. Combining (36) and (38), we,
therefore, conclude that for the / = 0 space harmonic mode,
all dispersion curves in the region defined by «w >0 and
k = 0 must satisfy

w>n(c/R,)cosd

w>kc(R,/R,)sing. (39)

Dependence of dispersion properties on the parameter
R_/R, is illustrated in Fig. 3 where the normalized eigen-
frequency wR,, /c cos ¢ (solid curves) are plotted versus the
normalized ‘axial wavenumber kR,tan¢ for /=0 helix
mode, ¢ =7/6, 6/L=0.3, and (a) R./R,=1.1; (b)
R./R,=15; (¢) R,/R;,=2; and (d) R./R,=5. Two
dashed straight lines represent w=kcsing and w=
ke(R, /R )sing from (29) and (39), respectively. Several
points are noteworthy from Fig. 3. First, dispersion curves
of the helix mode approach to the straight line defined by
(29) as the parameter R, /R, is reduced to unity. Second,
the dispersion curves of the helix mode wiggle more promi-
nently as the parameter R, /R, increases from unity to
infinity. Third, the helix dispersion curves overall approach
to the line w=kc(R, /R, )sin¢ as the parameter R, /R,
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Fig. 3. Plots of normalized eigenfrequency wR; /ccos¢ (solid curves)
versus normalized axial wavenumber kR, tan ¢ obtained from (24) and
(25) for =0 helix mode, ¢ =7/6, 8/L=03. (a) R./R,=1.1. (b)
R./R,=15. ()R, /R,=2. (A R /R, =5.
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Fig. 4. Plot of normalized eigenfrequency wR, /c cos ¢ versus kR, tan¢
obtained from (24) and (25) for ¢ = #/12, R_ /R, =1.5 and parameters
otherwise identical to Fig. 3.

6 R./Ry=15
¢ =30°
5 §/L=03 7

1=0

4
wRy,
ccos ¢ 3
2
/
/
v/ HYBRID WAVES
/
0 1 1 1 1 )
0 1 2 3 4 5
kR, tan ¢

Fig. 5. Plots of normalized eigenfrequency wRy, /¢ cos ¢ versus kR ,tan¢
obtained from (24) and (25) for R./R, =1.5, =0 hybrid waves and
parameters otherwise identical to Fig. 3.

increases to infinity. Obviously, in the limit R /R, — o,
every minimum points of w in the dispersion curves are
equal to zero where the line w = kc(R, /R )sin¢ is merely
simplified to @ =0. Shown in Fig. 4 is a plot of the
normalized eigenfrequency wR, /ccos¢ versus kR,tan¢
obtained from (24) and (25) for ¢ =7/12, R /R, =1.5
and parameters otherwise identical to Fig. 3. From a
comparison of Fig. 4 with Fig. 3(b), we observe that
the helix-mode dispersion curve wiggles more notably as
the pitch angle ¢ reduces to zero.

We conclude this section by presenting plots of the
normalized eigenfrequency wR, /ccos¢ in Fig..5 versus
kR,tan¢ obtained from (24) and (25) for R /R, =1.5,
[ =0 hybrid waves and parameters otherwise identical to
Fig. 3. Here the hybrid waves are defined by all the possible
eigenmodes in the dispersion relation in (24), except the
helix mode. There are infinite numbers of hybrid waves.
Few examples of these waves are shown in Fig. 5. From the
numerical analysis, we note that for R, /R, #1, all the
dispersion curves of the hybrid waves approach to the line
w=kcsin¢ as the axial wavenumber k increases to infin-

ity.
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IV. CONCLUSIONS

In this paper, we have investigated properties of the EM
wave propagation in a tape-helix-loaded waveguide. In
deriving the dispersion relation of the wave, we assumed
that the current in the tape flows only in the tape direction
and that it does not vary in phase or amplitude over the
width of the tape. In the limit R /R, —1, it has been
shown that the helix mode in a tape helix is identical to
that of a sheath helix, thereby not depending on the width
of helix tape. Moreover, presence of the outer conducting
wall completely eliminates the forbidden regions usually
appearing in a tape-helix theory. From numerical analysis
of the dispersion relation, we found that the dispersion
curves of the helix mode wiggle more prominantly as the
outer conducting wall is further removed from the helix to
infinity. In addition, it has been also found that there are
infinite numbers of hybrid waves which mostly consist of a
combination of the TE- and TM-like modes.

Finally, a preliminary study on the gyrotron amplifier in
a tape-helix-loaded waveguide has been carried out. This
study exhibits a strong coupling between the electron
cyclotron mode and the hybrid waves, indicating possibil-
ities of the microwave amplifications by a hybrid fast wave.
However, theoretical analysis of the gyrotron amplifier in a
tape-helix waveguide is very complicated and is currently
under intensive investigation by authors. The results of this
work will be published elsewhere.
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Mode-Specific Reflectometry in a Multimode
Waveguide

' DAVID S. STONE, MEMBER, IEEE, KEVIN L. FELCH, AND STEPHEN T. SPANG, MEMBER, IEEE

Abstract —A technique for measuring the voltage-standing-wave ratio
(VSWR) created by a mismatch for a specific mode in a multimode
waveguide is described. A heavily loaded resonant cavity is used to launch
the mode of interest and the variation in the cavity loaded Q is noted as the
phase separation of the cavity and the mismatch is varied. The bandwidth
of this technique is generally about 0.03 percent and VSWR as low as
1.05:1 may be measured accurately. Mode-specific VSWR measurements
are of particular interest in anmalyzing the performance of multimode
waveguide components, and in optimizing multimode networks. The mea-
surement technique may be used, for example, in the design and optimiza-
tion of transmission lines for electron cyclotron resonance heating systems
in magnetic fusion devices.

I. INTRODUCTION

ECENT ADVANCES in high average power millime-
.ter-wave devices, such as the gyrotron [1], [2], have
aroused interest in the use of multimode waveguides for
handling power levels which would produce excessive power
densities in single-mode systems. Millimeter-wave sources

of this type are susceptible to mode competition [3], which .

is aggravated by reflections of either the principal mode of
interest or of the competing modes. It is, therefore, particu-
larly important to be able to characterize a multimode
waveguide system by measuring the voltage-standing-wave
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Fig. 1. Schematic diagram of three VSWR measurement techniques in
multimode waveguide.

ratio (VSWR) for several specific modes of interest in the
system. \

Conventional reflection measurements in waveguides are
made using commercially available transducers to launch
the waveguide mode of interest (see Fig. 1). Standard
millimeter-wave test equipment is designed for the TET,
(fundamental rectangular) mode, whereas overmoded
transmission lines, as employed in long-distance telephone
links [4], or gyrotron collector structures [5], are typically
cylindrical. Thus transducers designed to produce mode
transformations of the type TEy, « TES, and TE( &
TMS,, are required. Only the simplest of these waveguide
components, the TET, « TES, transducer is available with

0018-9480,/83,/0900-0710501.00 ©1983 IEEE



